

BIT BANGING I2C
FOR

PIC PROCESSORS

(Preview)

BIT BANGING I2C
FOR

PIC PROCESSORS
(Preview)

David W. Hoffman

First Edition

Copyright © 2005 David W. Hoffman

All rights reserved. No part of this work covered by the copyright

hereon may be reproduced or used in any form or by any means
without written permission of the author.

I2C™ is a trademark of Phillips Corporation.
MPLAB IDE™ is a trademark of Microchip.

Contents

INTRODUCTION .. 1

BIT BANGING – DEFINED ... 1
CODING CONCERNS WITH THE.. 2
16C5X & 16F5X PROCESSORS.. 2
DEVELOPMENT ENVIRONMENT .. 3
OBSERVING A PIC IN ACTION. ... 3

SECTION ONE – SERIAL COMMUNICATION CODE DESIGN 5

SECTION TWO – BUS CONTENTION ... 9

METHOD ONE – MULTIPLE I/O LINES .. 10
METHOD TWO – SINGLE I/O LINE .. 11
METHOD THREE – MASTER CONTROL DEVICE... 12

SECTION THREE - BIT BANGING I2C .. 15

THE I2C PROTOCOL .. 16
I2C BUS CONTENTION .. 17
THE HEADER FILE FOR I2C COMMUNICATION.. 18
I2C CODE.. 19

Call Table ... 20
I2C_START ... 21

About The Author

David W. Hoffman is an avid electronics enthusiast with
a diploma in electronics design and troubleshooting and
he enjoys designing electronic circuits. David currently
lives in south Florida with his wife Elisabeth.

To my loving wife, Elisabeth.

Bit Banging I2C for PIC Processors

 1

Introduction

Programming PIC micro-controllers is a very rewarding and
challenging endeavor. Adding peripheral devices to PIC projects
can be even more challenging when using serial communication.
This book tackles one of the most popular serial protocols, I2C,
by providing working code and explaining how that code accom-
plishes serial communication.

The code presented in this book is fully functional and has
been tested to insure that it’s usable. However, it’s not practical
to test this code with every single serial device out there. So
modifications and problems are bound to arise. If you ever have
issues getting this code to work you’re more than welcome to
contact me and I will do my best to help resolve the issues you
are facing.

This book is intended for the novice PIC programmer not fa-
miliar with serial communication. However, it is assumed that
you are familiar with assembly, have a PIC programmer or
access to one, and that you have a development environment
like Microchip’s MPLAB IDE. Writing code without such a devel-
opment environment is sure to cause you frustration. I highly
recommend taking the time to download this free development
tool from Microchip’s website.

You should also locate and download the datasheets men-
tioned in this book. All the devices mentioned in this book are
modern and you shouldn’t have any trouble locating the data-
sheets for these devices on the manufacturers website. Having
the datasheets on hand will aid in understanding the code
presented in this book.

Bit Banging – Defined

What exactly is “Bit Banging”? Well, not all processors have
built in serial support and in these instances designing your own
code to implement serial communication is required. This kind of
coding is called bit banging. For example, the PIC16C5x and
16F5x devices do not have any kind of serial support built in. So

David W. Hoffman

 2

to add serial devices to a project you have to create code to
handle the communication. The advantage to designing your
own code is that you can add serial communication to any
processor! You will also gain valuable coding experience and this
will help you write better programs for future projects! Here are
a few more of the advantages and disadvantages:

Advantages:
• You can implement projects using low-cost RISC processors.
• You have complete control over every aspect of the commu-

nication process and can customize this process to suite your
needs.

• You can mix devices from different protocol families.
• You can implement as many or as few device commands as

you like.

Disadvantages:
• You have to code all communication processes and this takes

valuable memory.
• You are responsible for all timing considerations. (more on

this later)

Coding Concerns with the
16C5x & 16F5x processors

Microchips 16C5x & 16F5x family of RISC based processors

are powerful tools for the hobbyist. Providing the ability to
reduce project circuitry and adding intelligence to projects. But
they do have some shortfalls. Most notably is that the CALL
command is limited to the first 256 bytes of memory in each
bank, this also applies to ADDWF PC. In fact with the exception
of the GOTO command any modification of the PC sets bit 8 to
zero. This can present a serious problem when large programs
need to be implemented. For this reason all the code presented
in this book takes this limitation into account.

To get around this problem most of the code will only use the
GOTO command allowing the code to reside anywhere in mem-

Bit Banging I2C for PIC Processors

 3

ory. To access routines a call table is created and resides in low
memory, below the 256-byte limit, providing a bridge to the
high memory routines. This will use only a few bytes of precious
low memory reserving that space for application code.

The other side benefit to this is that all calls to the serial I/O
code will only require a single byte of the two-byte stack. This
allows sub-routines in main memory to execute a call to the
serial I/O code. As long as the two-byte stack isn’t exceeded the
program will be able to return from the routines problem free.

Development Environment

The code presented in this book is in assembly and has been
developed in the Microchip MPLAB IDE software. This book
assumes you have this software (Available for free from Micro-
chip and I highly recommend downloading this fantastic free
development tool!) or a development environment similar to
MPLAB IDE. This book also assumes you know how to use this
software and makes no attempt to explain the use of MPLAB
IDE.

Observing a PIC in Action.

Being able to see your PIC work is of great benefit. It’s very
useful to see the PIC actually sending and receiving data and
also having a way to display the status of the program. The
easiest way to accomplish this is to wire up an LED to each pin
on the PICs ports. But let me offer some words of caution doing
this. According to the datasheet for the PIC16C5x PICs any pin
on a port can only provide 20 ma of current and the port can
only provide a maximum of 40 ma of current. If you wire in a
single LED to any pin on any port it will draw about 7 ma (at
3.33 V with a 470 Ohm resistor). This neither exceeds the pin or
port max. But if eight LEDs are wired in when all eight are lit
they will draw 56 ma exceeding the port maximum of 40! This
can and probably will damage the PIC.

David W. Hoffman

 4

To avoid this there are several solutions available. The most

easily implemented is to use an 800-ohm resister to connect the
LEDs. According to Ohm’s Law this will only require 4 ma of
current per LED and a maximum of 33 ma on the port if all 8
LEDs are lit. This doesn’t exceed the port maximum of 40 ma
but it also doesn’t leave much power to run other devices. This
method works fine if you’re just using that port to observe data.

However, if you are looking to operate more than a few de-
vices from a single port and you still need to watch that data
using LEDs then another method needs to be implemented.
Some solutions are:

• Using NPN transistors to act as switched. This greatly re-

duces the current draw on I/O pins and the port as a whole.
• Using a buffer IC such as a 74LS533 Octal D-Type Transpar-

ent Latch. This is a non-inverting latch allowing data to flow
freely through it and also acts as a buffer. Another benefit
this IC has is it can latch the data passing through it at any
time allowing you to more closely observe a specific data
state.

Proper calculation of current needs is extremely important. If

you exceed a devices limits you can and most probably will
damage or even destroy that device. Something to seriously
consider when working with an EEPROM PIC that costs upwards
of $15. One can never be too careful.

Bit Banging I2C for PIC Processors

 5

Section One – Serial Communication Code Design

Serial communication has tremendous advantages over par-

allel communication. Of course there is the obvious disadvan-
tage of data transfer rate but parallel data transfer has many
dedicated I/O pins used for memory addressing and data
transfer. This can quickly turn a simple project into a major one
just in the amount of additional wiring required. For example, a
512-byte parallel EEPROM required 8 transmission lines for the
address and 8 transmission lines for data. That’s a total of 16
wires going from your PIC to your EEPROM. And this isn’t even
considering the control lines that are required.

Serial communication reduces the number of connections to
just a few leaving I/O bits free for other uses. Serial devices
available include EEPROMs with Write/Erase cycles as high 1
million. Port expanders, AD Converters and much more. These
are only a few of the many advantages serial communication
has over traditional parallel communication. Learning how to

David W. Hoffman

 6

implement serial devices in your circuits will add functionality
taking your projects in directions you probably would have
never otherwise considered.

Implementing serial communication in a processor that does
not have built in support can be challenging. Many issues have
to be considered such as timing, transmitting the correct num-
ber of bits, receiving the correct number of bits, and starting
and stopping serial communication sessions correctly. These are
many of the issues that need to be considered and handled but
certainly not all of them. This book is intended to provide you
with the knowledge and tools needed to implement I2C serial
communication in any processor that does not have built in
serial support.

It’s also imperative to design the code so that the implemen-
tation of various serial devices is possible. It’s just not practical
to design the code to support a single device and then have to
make major changes to support additional devices. And consid-
ering the protocol covered here, flexibility is of great impor-
tance. There are many types of I2C peripheral devices available
on the market. And this makes I2C a very attractive protocol to
implement in projects.

However, the code presented in this book is designed around
serial EEPROMs. But since every single device using I2C will
permit the code, developed here, to be easily integrated into
using other devices. In other words this code will easily support
other devices in addition to EEPROMs. The code is designed
around the implementation of several steps to complete an I2C
communication session, these are:

• Send the start bit to the device.
• Send the required command byte(s).
• Send the address (if required).
• Send or receive the data byte.
• Send the stop bit to the device.

Starting from these basic building blocks the code is broken

down into three major files, they are:

Bit Banging I2C for PIC Processors

 7

• Header File – The header file contains all the declarations
for variables and labels. This allows changes to the code to
take place by simply altering the value of a variable. Take
for example the variable I2C_SDA, which holds a value from
0 to 7. This number is used to indicate which bit on the I/O
port is to be used to send and receive data. Just as the vari-
able SDA_CLK is used to specify which bit on the I/O port is
used to send out clock pulses. By changing the values of
these variables you can quickly change which bit or port the
core code uses to communicate with serial devices.

• I2C Core Code – Consists of a number of routines designed
to handle communication with serial devices. These routines
are in their own file so that they can easily be imported into
projects.

• I2C Implementation Code – is the code required to im-
plement the core routines in your projects.

The core routines are designed to simply send and receive

an eight-bit word. It’s up to the main code, your code, to decide
what is being sent. This allows you to communicate with devices
that require a single or several commands. This in turns allows
you to implement any size EEPROM required.

For instance, say you are communicating with a serial
EEPROM that requires only a single address byte. You’ll only
need to send the command word, followed by the address byte
and then send or receive the data byte. Using this method
allows you control over how much data is sent to the serial
device. All you need to do is make changes to your main code.
Rarely will you need to make changes to the serial communica-
tion core code.

However, with every rule there is an exception and in this
case this holds true. You will need to make changes to the core
code when implementing devices that use different commands
than those presented in this book. Although nearly every
EEPROM, regardless of size, uses the same commands to send
and receive data this isn’t true for other devices. These other
devices use different commands and this means that changes
will need to be made to the code so that these devices can be

David W. Hoffman

 8

properly implemented. But don’t fret, this topic is covered in
greater detail later in the book.

The last element that needs introduction in the core code is
the call table. The call table is implemented due to a limitation
of the PIC 16C5x series processors, discussed in the previous
section. The call table is a chunk of code that exists at and
below the 255-byte barrier. This code only consists of some
simple configuration commands and GOTO commands that jump
the program to the appropriate code higher in memory. This
allows the majority of the serial core code to exist in high
memory saving low memory for application code and data
lookup tables. It’s important to note that only the last command
being called needs to exist at address 255 (0xFF Hex) as the
RETLW command will properly return to the calling routine
regardless of where RETLW exists in memory.

Bit Banging I2C for PIC Processors

 9

Section Two – Bus Contention

One of the most challenging problems you’ll face is the possi-
bility of bus contention when using more than one processor in a
circuit. Bus contention occurs when both processors try to
access the serial bus at the same time. This is a serious problem
with any protocol and can cause chaos with serial access. It
comes down to you to make sure that your multiple processor
environment is free from the possibility of bus contention.

Imagine that you have two processors in a circuit each serv-
ing a specific task. Both processors are capable of accessing a
single EEPROM for storing and retrieving information. Since both
processors are not equipped with built in serial support neither
has a way to know when the other processor is accessing the
serial bus. The result is that both processors can access the bus
at the same time causing miscommunications and disrupting
proper operation throughout the circuit. Certainly not a situation
any designer wants to face.

David W. Hoffman

 10

There are several possibilities for resolving this issue. The
first relies on the use of multiple I/O line on a PIC port to inform
and be informed when the serial bus is in use. The second relies
on a single I/O line to inform and be informed of bus activity.
They both have pros and cons.

Method One – Multiple I/O Lines

The first solution uses extra I/O lines to communicate a proc-
essor’s state to other processors. One I/O line is used for each
processor to indicate its status. So if there are two processors in
the circuit each would have two I/O lines dedicated to this
communication. Each processor will indicate when it’s using the
bus by bringing its I/O line low. When it’s not using the bus it
will bring its I/O line high. But either processor can only use the
bus after checking the state of the other processor first. For
example:

Let’s call our two I/O lines P1 and P2 and are assigned to
each processor respectively. Both lines are connected to both
processors so they can communicate their state. If processor
one wishes to transmit or receive data on the serial bus it must
first check the state of the P2 line. And if P2 is low then proces-
sor two is currently using the serial bus. Once P2 come high
processor one will be allowed to access the bus. Once processor
one detects P2 high it immediately brings it’s own control line P1
low so that processor two will know that the serial bus is in use.

Although this design seems to eliminate bus contention it is
still possible, although remotely so, for both processors to fall
into accessing the serial bus at the same time. Take for example
the instance where both processors are near to accessing the
serial bus at the same time. Processor one checks P2 and finds
it high but before processor one can bring P1 low processor two
checks P1 and finds it high. Both will now think that the serial
bus is free when in fact it’s not.

One possible solution is, for example, processor one to re-
sample P2 several times after bringing P1 low. If during this
period P2 goes low then P1 knows that P2 is confused and that

Bit Banging I2C for PIC Processors

 11

P1 needs to relinquish control of the serial bus. Repeated
sampling of the control lines is probably the only way to insure
that both processors won’t fall into this rare possibility.

Another solution to this possibility is to constantly check the
state of P1 and P2 and if at some point one goes low when it
shouldn’t you can have both processors abort the sequence and
re-negotiate who has control. Another is to actually sample P1
or P2 multiple times to insure that it the serial bus is indeed
free. Perhaps even re-sampling P1 or P2 after claiming control of
the bus to be sure that there isn’t contention between the two
processors.

The main advantage to this method is that it requires less
code than the next method presented. The disadvantage is that
it increases the number of connections in the circuit. If you’re
only using two processors this method should work fine but
more than two and the number of additional wires can quickly
defeat the purpose of using serial devices.

Method Two – Single I/O Line

With this second method the multiple control lines are re-
placed with a single line. A pull-up resister is used to keep the
line high when not in use. Since this single data bit is tied to all
the processors in the circuit the amount of wiring is greatly
reduced over the previous method. The drawback is more
coding is required to implement this method and a close look at
how it will be implemented brings up the possibility of still facing
bus contention.

For any processor to take control of the serial bus it must
first check the state of the control line to see if it’s high. If so
then the processor brings the line low, by putting a low on that
bit. This indicates to all other processors that the serial bus is in
use. This works in theory but the possibility of bus contention
still exists. Take for example P1 looking at the control line and
seeing it high. This processor then has to execute a number of
instructions to change the I/O state of that bit and bring the
control line low. During this period of time another processor

David W. Hoffman

 12

may look at the control line and see that it is still high. This
second processor then starts executing code to bring the control
line low. So this method alone is still not a solution.

To resolve this possibility each processor needs to enter a
queue and this can be accomplished by forcing each processor
to check the control line multiple times. And if the control line
remained high during that period of time the processor may
then take control of the bus. A simple loop will accomplish this:

 CLRF COUNTER

LOOP BTFSS CONTROL_BIT
 GOTO B_BUSY

 INCFSZ COUNTER
 GOTO LOOP

 ;CODE HERE TO TAKE CONTROL OF THE BUS
B_BUSY ;BUS IS BUSY WAIT FOR BUS TO BE FREE AND

;THEN TRY AGAIN.

With this code the possibility of multiple processors taking
control of the bus is greatly reduced but not completely elimi-
nated. To eliminate bus contention completely one processor
has to be declared the master. Someone has to have control
over who has access to the serial bus and who doesn’t and this
can be accomplished in one of two ways:

Method Three – Master Control Device

By assigning one processor master control all others will have
to bend to the master’s will. The master processor uses an I/O
bit to communicate to other processors who is in control. Using
this method requires a substantial increase in wiring. Every
single processor has a control line going to it from the master.
The master continuously cycles through the other processors
giving each a chance to take control of the serial bus. Once the
master detects activity on the serial bus whatever processor
initiated that activity has control. Once activity ceases on the

Bit Banging I2C for PIC Processors

 13

serial bus the master then give the next processor a chance to
use the serial bus and so on…

Since the master device has ultimate say of which processor
has control and when there is no chance of bus contention. The
drawback: Increased wiring is required and a PIC has to have at
least a portion of the available resources dedicated to the
control code. There is however another option.

Combining a binary counter with a binary to decimal decoder
can produce the required control circuitry. For a PIC to take
control of the bus it must first check the control line it is as-
signed and see if it’s low. If so it can then bring low another
line, let’s call it BUS_BUSY, that is wired to an AND gate. This
AND gate controls the clock signal going to the counter. Once
BUS_BUSY is low the processor then checks the control line to
be sure it is indeed still low. This tells the processor that it took
control of the serial bus in time and that that control didn’t slip
by while it was executing code. If the control line is high then
the processor knows it missed it’s chance and has to bring
BUS_BUSH high again. This allows the clock signal through the
AND gate and the polling continues. The processor will have
another shot at the bus shortly once its control line is activated
again.

Having a device designated as the controller of serial bus
activity is probably the safest way to implement a multiple
processor circuit. The only drawback is the additional circuitry
and code required to implement multiple processor serial ac-
cess. In fact, you may find it easier to just use PIC devices with
built in serial support. These problems are eliminated with these
processors and make multiple processor environments easier to
implement.

David W. Hoffman

 14

Bit Banging I2C for PIC Processors

 15

Section Three - Bit Banging I2C

Coding from scratch to take advantage of I2C devices isn’t

that hard. In fact, once the basic code is developed it’s very
easy to modify it to take advantage of other I2C devices. This
chapter will cover all the required code for communicating with
I2C devices.

I2C, developed by Philips Semiconductors, uses a simple
communication protocol to access peripheral devices on the bus.
There is a master device and a slave device. This exercise
assumes that the master device is always the PIC16C55 and
that the slave device is a Microchip 24C01C serial EEPROM (1k
bit EEPROM configured in a 128 x 8 matrix).

David W. Hoffman

 16

The I2C Protocol

I2C uses just two wires to implement serial communication
between one or more master devices and one or more slave
devices. Communication is initiated with a START bit (Which is a
START condition generated by bringing SDA low while CLK is
high) and then is followed with a Control Byte (Figure 1). The
control byte consists of the control code, device address, and
the read/write bit. The control code will always remain the same
for the device being accessed and in this case is 1010 for the
serial EEPROM. The device address can range from 000 to 111
allowing up to seven different devices on the same bus. The
read / write bit tells the device which operation is being per-
formed. Device addressing is accomplished by tying pins high or
low on the device itself. There are three pins (A0 – A2) on the
24C01 serial EEPROM that allow us to determine its address on
the bus. Tie all the pins low and the devices address is 000. Now
Tie pin A0 high and keep the other two low and the address
becomes 001. And 010 if pin A1 is high and pins A0 and A2 are
low. Using this method any address between 000 and 111 can
be assigned to any device. And this allows multiple devices on
the same bus.

For example, let’s say you need to send a write command to
device 010. The control byte would look like this 10100100.
Once the START bit is sent the control byte is transmitted on the
bus. Only the device with the address 010 will acknowledge
receiving the control byte with an ACK. A complete write session
(Figure 2) consists of a START bit, command byte, ACK, address
byte, ACK, data byte, ACK, and the STOP bit.

There are two ways you can read a byte from the device. The
first consists of sending a control byte with the read/write bit
set. This will allow the retrieval of the data byte located at the
address of the last operation + 1. For example, if you write a
data byte to address 00001010 inside the EEPROM doing a read
will return the contents located at address 00001011.

To read from a random address you will first have to set the
address pointer inside the EEPROM to the address you wish to
read from. This is accomplished by first sending out a write

Bit Banging I2C for PIC Processors

 17

command byte followed by the address you wish to read. Next a
START bit is generated and then the read control byte is sent
out. Now the data byte is read from the device at the address
specified in the write part of this session (Figure 4). Note: An
ACK is not generated after reading the data byte.

I2C Bus Contention

If you’re planning on using more than one master on a bus
then it is highly recommend using processors that have built in
I2C support. When working with a single processor you will
always know who is in control of the bus, the one PIC in the
circuit. However, if you have two processors then the possibility
of bus contention arises as discussed in section one. But if using
processors with built in serial support is not possible then using
one of the methods discussed in section one is certainly recom-
mended.

David W. Hoffman

 18

The Header File for I2C Communication

Go ahead and create a new project in MPLAB and then create
a new file. This will become the header file for the I2C code.
Place the code listed below in the header file and call it
“i2c_128b.h”. The code listed in this chapter required the use of
six registers and is designed to be as configurable as possible.
After all, this is cut and paste code, and is intended to be
inserted into many PIC projects.

I2C_EEPROM_W EQU 0xA0
I2C_EEPROM_R EQU 0xA1
I2C_CLK EQU 0x00
I2C_SDA EQU 0x01
I2C_PORT EQU 0x06
I2C_TRIS EQU 0x1B
I2C_DEVICE EQU 0x1C
I2C_COUNT EQU 0x1D
I2C_STATUS EQU 0x1E
I2C_IO EQU 0x1F

Let’s break these down each label and see exactly what they
are for:

• I2C_EEPROM_W Write command byte for EEPROM
• I2C_EEPROM_R Read command byte for EEPROM.
• I2C_CLK Bit on port I2C_PORT used to send

clock pulses.
• I2C_SDA Bit on port I2C_PORT used to send

and receive data.
• I2C_PORT IO port used to communicate with

serial devices.
• I2C_TRIS Stores the input / output states of

other bits on I2C_PORT.
• I2C_DEVICE Register used to store the device

address.

Bit Banging I2C for PIC Processors

 19

• I2C_COUNT Register used to keep track of what
bit is being sent or received.

• I2C_STATUS Register used to keep track of
internal modes.

• I2C_IO Register used to store the date
being sent or received.

You may be asking yourself why a register dedicated to the

port state is required. Simply put this register is being used to
keep track of the I/O state of the other bits on the port being
used to communicate with the serial EEPROM. Since ports on the
PIC are either 4 bits wide or 8 bits wide this leaves other bits
that can be used for other tasks. And during a read or write
process to the serial device the TRIS command will be used to
change the SDA bit from data out to data in and back again.
I2C_TRIS is used to preserve the states of these other bits. For
example: Say bits 0 and 1 on PORT B are being used to com-
municate with the serial EEPROM. And bits 2 – 7 for other tasks.
Some are input and some are output. Whenever a TRIS is used
to change bit 1 to an input or output state during a communica-
tion session you don’t want to change the state of the other port
bits. They need to remain the same. By storing the state of the
port in I2C_TRIS whenever a TRIS on I2C_PORT is done the
state of the other bits will be preserved.

I2C Code

Here is the complete code you’ll need to implement I2C com-

munication using a PIC 16C5x processor. The total number of
core commands consists of 81 instructions. This does not
include the commands required to access the core routines. This
code can easily be adapted for use in other PIC processors.
Later in this chapter will discuss modifying this code to add
support for other I2C devices. But first, here’s a look at the code
of each routine in detail.

David W. Hoffman

 20

Call Table

I2C_SREAD BSF I2C_STATUS,7

GOTO I2C_START
I2C_SWRTE BCF I2C_STATUS,7

 GOTO I2C_START
I2C_READ GOTO I2C_RWORD
I2C_WRITE GOTO I2C_WWORD
I2C_STOP GOTO I2C_STPB
I2C_WAIT GOTO I2C_WAITA

This is the call table and consists of five commands. They

are:

• I2C_SREAD is used to start a read process and consists of
two commands. The first is setting bit 7 of I2C_STATUS and
the second is jumping to the I2C_START routine.

• I2C_SWRTE is the same as I2C_READ except bit 7 in
I2C_STATUS is cleared.

• I2C_READ jumps to the read routine I2C_RWORD and
reads a data word.

• I2C_WRITE jumps to the routine I2C_WWORD and writes a
data word.

• I2C_STOP jumps to I2C_STPB and generates the stop
condition.

• I2C_WAIT jumps to I2C_WAITA and is used to delay
further I2C operations until a write sequence is complete
(more on this later).

The main purpose of the call table is to allow the majority of

the code to exist above address 0x0FF. As discussed in chapter
one on the PIC16C5x processors the CALL command can only
access the first 256 bytes of memory in any bank but the GOTO
command is not subject to this limitation. With this call table
only 7 bytes of memory are used in the precious 256 low mem-
ory section. This reserves most of this memory area for other
code or data lookup tables.

Bit Banging I2C for PIC Processors

 21

I2C_START

I2C_START BSF I2C_PORT,I2C_SDA
 BSF I2C_PORT,I2C_CLK

BCF I2C_TRIS,I2C_SDA
MOVF I2C_TRIS,0
TRIS I2C_PORT
BCF I2C_PORT,I2C_SDA
BCF I2C_PORT,I2C_CLK
MOVLW I2C_EEPROM_W
BTFSC I2C_STATUS,7
MOVLW I2C_EEPROM_R
IORWF I2C_DEVICE,0

I2C_START is responsible for generating the start condition,

setting up the I/O port for data transmission and configuring the
control byte and sending the control byte out to the I2C device.
Let’s look at each command in more detail.

• BSF I2C_PORT,I2C_SDA – Makes sure that I2C_SDA is

high. I2C_SDA must be high for a successful execution of a
start bit. I2C_SDA must be set high before I2C_CLK to in-
sure a start or stop bit isn’t sent by accident.

• BSF I2C_PORT,I2C_CLK – Makes sure that CLK is high.
CLK must be high for a successful execution of a start bit.

• BCF I2C_TRIS,I2C_SDA – Clear bit I2C_SDA in I2C_TRIS.
This is done so that only the I/O state of I2C_SDA is
changed when using the TRIS command I2C_PORT.

• MOVF I2C_TRIS,0 – Move the contents of I2C_TRIS into
the W register.

• TRIS I2C_PORT – TRIS I2C_PORT so that bit I2C_SDA is in
output mode.

• BCF I2C_PORT,I2C_SDA – By bringing I2C_SDA low the
start bit is generated.

• BCF I2C_PORT,I2C_CLK – Bring I2C_CLK low. I2C_SDA
can only safely be changed when I2C_CLK is low.

David W. Hoffman

 22

• MOVLW I2C_EEPROM_W – First command of configuring
the command byte. b’10100000’ is moved into the W regis-
ter.

• BTFSC I2C_STATUS,7 – Check the state of bit 7 in
I2C_STATUS and if clear skip the next command.

• MOVLW I2C_EEPROM_R – This command is executed if bit
7 in I2C_STATUS is set and this means that a read operation
is taking place. b’10100001’ is moved into the W register.

• IORWF I2C_DEVICE,0 – The command byte is finished by
merging the contents of the w register with the address of
the device being accessed. This is accomplished by using the
IORWF (Inclusive OR) command. The use of the IORWF
command dictates that I2C_DEVICE be free of any set bits
except for the device address bits (bits 3,2, and 1). All other
bits in this register should always be clear! For example: If
I2C_DEVICE has the value of 0x06 (b’00000110’) this means
device 0x03 on the bus is being accessed. After the inclusive
OR command the W register will contain the value
b’10100110’ for a write command byte and b’10100111’ for
a read command byte. If any other bits in I2C_DEVICE are
set it’s possible to corrupt the command byte and cause a
failure in the session.

END OF PREVIEW

